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Strain Gage Analysis for Nonlinear Pile Stiffness

ABSTRACT: Interpreting strain gage data from deep foundation (pile) axial load tests is usually assumed to be a simple calculation. The meas-
ured strain at any point in the test is multiplied by the computed Young’s modulus E of the pile to obtain stress. The stress is then multiplied by
the cross-sectional area A to derive the load carried by the pile at the elevation of the strain gage. However, if the product of A and E (the axial pile
stiffness) is nonlinear, the load-strain path must be considered and an incremental approach taken in order to approximate the true load value. Con-
crete cast-in-place piles may develop transverse tensile cracks, either due to soil restraint during curing or as a result of applied tensile loads. As
such cracks open and close, the resultant axial pile stiffness will change significantly and abruptly, and the assumption of a constant stiffness can
lead to significant error when computing loads from strain gages. This paper presents the mathematical derivation of the incremental load-strain
calculation and case histories to illustrate the method.
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Introduction

Static load tests are performed to measure the side shear and end
bearing resistance of the test pile. Load tests are typically per-
formed by increasing the load in steps, each of which is held con-
stant for some prescribed amount of time (ASTM D1143_D1143M
2007). Strain gages are often positioned within piles to assess the
load distribution within the pile during a load test. For cast-in-place
piles (the subject of this paper), the typical procedure for converting
strain gage data to loads is to first estimate the concrete Young’s
modulus EC and combine this with the cross-sectional area of con-
crete AC, reinforcing steel area AS, and steel Young’s modulus ES

into a composite axial pile stiffness AE. The load at a particular
strain gage elevation during any step of the load test is then com-
puted as this composite stiffness multiplied by the recorded strain.
If the composite axial pile stiffness is not constant, this procedure
will give an erroneous value for the strain gage to load computa-
tion, resulting in incorrect values for unit shear and unit end
bearing.

Typically in geotechnical applications, resistance or vibrating
wire type strain gages are attached at various elevations to the
rebar cage, which is then cast in concrete. The interaction of the
newly-constructed pile with the surrounding soil or rock typically
produces a passive “residual load” or “locked-in load” (Fellenius
2002a,2002b). This load may be mobilized by thermally-induced
strain as the composite pile first heats up due to hydration and
then cools off to the ambient soil temperature, along with pore
water pressure dissipation in the surrounding soil and other
effects. Any such external residual load will result in a counterbal-
ancing internal stress within the pile. If the pile concrete is
stressed beyond its tensile limit it will develop fractures, which
can have a significant impact on strain gage data collected during

active load testing. A possible mechanism for such tensile frac-
tures to develop passively exists in a pile cast into rock or very
stiff soils. A sufficiently stiff surrounding soil will immobilize the
pile, preventing it from elastically contracting in response to ten-
sile stress. The presence of concrete fractures in a composite pile
will result in a highly non-linear axial pile stiffness, leading to
errors in the strain gage data analysis. This phenomenon has been
noted previously in literature (Hayes and Simmons 2002) how-
ever, has not been examined in detail.

Curing Data Case History

Relatively large strains (100–300 microstrain) in bored cast-in-
place piles during the curing process and prior to active loading
have been documented by others (Fellenius et al. 2009; Perazzo
2002). Figure 1 illustrates a data set recorded every 15 min from
the time of casting and prior to any active loading for a pile test
conducted in Friedetal, Germany (LOADTEST 2006). Note that
measured strains have been corrected for temperature changes per
the gage manufacturer’s specifications. The sign convention for
the strain plot is positive for compression and negative for tension.
At an age of approximately 7.5 days, strain gage level 2 data
exhibits a sudden strain release which may indicate fracturing of
the pile concrete. Both of the paired gages whose data were aver-
aged to produce the plot recorded the same behavior. From its
peak at approximately 2 days after construction to 7.5 days, the
concrete temperature dropped by about 20 �C. Assuming a coeffi-
cient of thermal expansion for the composite pile of 12 micro-
strain (le) per �C, this cooling should result in a compressive
stress-free strain (shortening) of 240 le in an unrestrained pile.
Over the same time period, strain gage level 2 records a net tensile
strain of approximately 100 le prior to the strain release. This ag-
gregate discrepancy of 340 le between the thermal contraction of
a theoretical unrestrained pile and the measured extension of the
actual embedded pile may account for the observed stress release
(concrete fracturing).
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Figure 2 illustrates the instrumentation schematic and the soil stra-
tigraphy for this 1.2-meter diameter test pile. Note that strain gage
levels 1 and 2 are below the tip of the permanent casing. The internal
steel reinforcement (rebar) is uniform for the length of the pile.

Incremental Method Formulation

The basic formula for converting uniaxial strain e to stress r is

r ¼ Ee (1)

During the typical analysis of load test data, this formula is
applied to each discrete load increment n, such that

rn ¼ Een (2)

The cumulative strain at any point n can be defined as the sum of
all incremental strain increases up to that point

en ¼
Xn

i¼1

Dei ¼
Xn

i¼1

ei � ei�1ð Þ (3)

The cumulative or total stress at the point n can therefore be
expressed as

rn ¼ E
Xn

i¼1

Dei (4)

FIG. 1—Post-pour strain monitoring (LOADTEST 2006).

FIG. 2—Instrumented pile schematic.
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if E is constant. If E is also variable (E(e) indicating a function of e),
the total stress can be expressed as

rn ¼
Xn

i¼1

E eið ÞDei (5)

and the incremental stress at any load increment can be expressed
as

Dri ¼ ri � ri�1 ¼ E eið Þð Þ ei � ei�1ð Þ (6)

The expression for total stress at any load increment n can there-
fore be written as a recursive equation

rn ¼ rn�1 þ E enð Þð Þ en � en�1ð Þ (7)

Although stress is an important value to obtain, load is the value
of principal importance to the engineer when analyzing pile test
data. Note that the preceding discussion of stresses versus strains
can be easily transferred to a discussion of loads P versus strains,
by simply multiplying both the stress and modulus by the assumed
pile cross-sectional area A. Equations 2, 5, and 7, respectively, are
restated to include area

Arn ¼ Pn ¼ AEen (8)

Pn ¼
Xn

i¼1

A eið ÞE eið ÞDei (9)

Pn ¼ Pn�1 þ A enð ÞE enð Þð Þ en � en�1ð Þ (10)

Note that for a constant axial stiffness AE, Eqs 9 and 10 will give
the same result as Eq 8. However, if either A or E is not constant,
but rather assumed to be a function of e, Eq 10 will give resultant
loads in a step-wise approximation of the nonlinear stiffness-strain
curve. In Fig. 3, three stiffness-strain curves are presented. The
first (constant slope line) is a linear stiffness-strain curve, as is
given by the common assumption of a constant AE. The second
curve is the result of a linearly decreasing AE, such as the result of
a tangent modulus analysis (Fellenius 2001). The third (double or
“S” curvature) is a possible stiffness-strain curve due to tensile
fracturing of pile concrete prior to compressive loading. Initially,
as the strain increases, the fractures close up and A effectively
increases so that at some finite strain the slope of the curve mirrors
that of the initial slope for an uncracked concrete specimen. Once
the full cross-sectional area A is engaged, further straining results
in similar behavior to the linearly decreasing AE stiffness-strain
(the second curve). Note that it is assumed that any non-linear AE
is a function of e, and that this function is known (or can be
approximated). Following the standard analysis procedure and
applying Eq 8 to each of the three strains (constant modulus strain
ec, tangent modulus strain et, and fractured modulus strain ef), it is
often assumed the resultant load (indicated by the horizontal
dashed line) will be the same for all three cases. However, as illus-
trated in Fig. 3, only the constant stiffness model yields the correct
load Pc when Eq 8 is applied. The actual load is underpredicted
for the tangent stiffness case (Pt<Pc) and overpredicted for the
fractured stiffness case (Pf>Pc), in both cases because the instan-

taneous stiffness AEn is simply multiplied by the total strain en,
without taking into account the stiffness-strain path.

If, on the contrary, Eq 10 is employed, using each load incre-
ment as a discrete step, the non-linear stiffness-strain curve
can be approximated by a series of small incremental increases in
load, each of which is linear with its corresponding increase in
strain.

In Fig. 4, the total load Pn is equal to the sum of the incremen-
tal loads, as given by Eq 10. Note that in some cases of nonlinear
stiffness, such as the tangent stiffness, the associated secant stiff-
ness, if it is known, could be applied using Eq 8 to also directly
compute the correct load.

As previously noted, the axial pile stiffness AE is composed of
two contributors; steel and concrete (AsEs and AcEc, respectively).
For concrete which is fractured (due to concrete shrinkage during
curing, or applied tensile loading), the nominal concrete area Ac is
replaced with an effective concrete area Ac

0. The low initial stiff-
ness and rapid increase of stiffness with increased strain in a frac-
tured pile under compressive load is assumed to be due to the
change of Ac

0from an initial small or zero value up to the full
cross-sectional area, as the fractures are closed due to increasing
compressive strain. Conversely, for a pile which is initially intact
but undergoes applied tensile load, Ac

0 will change from an initial
full area cross-sectional down to zero, as fractures are formed due
to increasing tensile strain.

Figure 5 illustrates two possible paths for nonlinear axial pile
stiffness (bold line segments) as functions of strain. The full com-
posite stiffness consists of AsEsþAcEc. The angular pathways to/
from the reinforcing steel stiffness (AsEs only) indicate idealized
changes in stiffness due to fracturing. With increased applied
compressive strain, the stiffness increases until the full composite

FIG. 3—Total load calculation.

FIG. 4—Incremental load calculation.
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stiffness is reached as pre-existing fractures close and Ac
0

increases from 0 to Ac. Conversely, with increased applied tensile
strain, the pile stiffness decreases from the full composite stiffness
down to the reinforcing steel stiffness only, as the concrete pro-
gressively fractures until only the reinforcing steel remains to
transmit load.

Non-linear pile stiffness can be deduced by plotting the incre-
mental strain Dei¼ (ei – ei-1) versus total strain en. If the pile is
intact and the stiffness is constant or near constant, the plotted
data should trend upward toward a horizontal asymptote as the
pile approaches ultimate capacity. On the contrary, if the incre-
mental strain initially decreases with increased cumulative strain,
and then levels off to an asymptote, this would indicate an increas-
ing modulus which eventually reaches a constant or peak value.

Analytical Case Histories

The method presented herein is applied to two Osterberg cell (“O-
cell”, Osterberg 1989) test pile data sets, which were selected
because the standard analysis method resulted in unreasonably
high calculated loads. The first case history (LOADTEST 2005a)
is a bored cast-in-place test pile constructed without slurry in Las
Vegas, NV. The pile diameter is 1067 mm, the pile depth is 30.5
m, and the soil profile was reported to consist of sandy clay with
caliche layers. Each strain gage level is an average of paired gages
positioned diametrically opposed at the same elevation in the pile.

Strain gage level 2 yielded very high strains in the initial part of
the load test, as plotted in Fig. 6. These resulted in an impossibly
large computed load, assuming a constant pile stiffness and using
the standard analysis described by Eq 8. The result of the initial
analysis is plotted in Fig. 7. If increasing load is applied to a pile in
equal increments and the pile stiffness is a constant (or changes
gradually with increased strain), then incremental measured strain
(ei – ei-1) should remain constant, or gradually change. Abrupt
changes in the incremental versus cumulative strain plot indicate a
highly non-linear pile stiffness. Figure 8 displays the incremental
strain versus cumulative strain plot and the corresponding assumed
stiffness function, which is then used to re-analyze the strain gage
level 2 data and produce the corrected load distribution curves
plotted in Fig. 9. The assumed stiffness function follows the
compressive stiffness pathway proposed in Fig. 5, with inflection
points defined by the incremental strain versus cumulative strain
plot. In Figs. 7, 9, 10, and 11 the strain gage level(s) which are
reanalyzed using the proposed incremental load-strain method
and variable stiffness assumption are designated with dashed
text box labels.

Note that in practice, a “zero” strain reading is logged in each
strain gage immediately prior to application of the test load. The
strains recorded during the course of the test are not absolute, but
rather relative to this zero strain reading. If the assumptions of lin-
ear elastic behavior are valid (that is, the pile behaves as an elastic
body), then the principle of superposition would indicate that,
whatever strain conditions arose in the pile prior to testing, it
should be possible to derive the correct loads via Eq 8. In the fol-
lowing examples, the O-cell load points represent known loads
applied to the pile, based on the calibration of the loading devices
and the applied hydraulic pressure. Any loads computed from
strain data which are higher than the known applied load are
physically impossible. The failure of the linear elastic analysis to
produce sensible results leads to the proposal of nonlinear pile
stiffness, and very high recorded strains lead further to the pro-
posal that this non-linearity is caused by concrete fracturing prior
to application of the load.

FIG. 5—Proposed stiffness pathways.

FIG. 6—Measured strains versus applied O-cell load.
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Computed loads at any point in a pile cannot be higher than
the load applied by the O-cell, and the usual procedure when con-
fronted with such a result was to assume a strain gage is
“malfunctioning” and discard the data. However, a close examina-
tion of the data and application of the incremental load-strain
method yielded sensible results from the measured data. Note that
because it is not common practice to continuously monitor strain
gages from the time of casting, curing strain data such as illus-
trated in Fig. 1 is not available for these two case histories.

As a sample calculation, at the end of the first loading incre-
ment, the average level 2 strain is 891.4 le, and the initial axial
pile stiffness AE is 516 MN (the axial stiffness of the reinforcing
steel). The load is computed as

P1 ¼ 891:4� 516ð Þ=1� 106¼ 0:46MN (11)

At the end of the second loading increment, the average level 2
strain is 1292.2 le, and the interpolated axial pile stiffness is 9915
MN. Using Eq 10, the load is computed as

P2 ¼ 0:46þ 1292:2� 891:4ð Þ � 9:915ð Þ=1� 106

¼ 4:43MN
(12)

Each subsequent increment is computed in the same manner as in
Eq 12, with the total load computed for the previous increment
added to the incremental load computed for the current increment.

The second case history (LOADTEST 2007) is a bored cast-
in-place test pile constructed under polymer slurry in Doha,
Qatar. The pile diameter is 1.5 m, the pile depth is 33 m, and
the soil profile was reported to consist of limestone underlain
by chalk. Multiple levels of strain gages yielded unreasonable

FIG. 7—Original strain gage analysis.

FIG. 8—Strain gage level 2 nonlinear stiffness function.

SINNREICH ON INCREMENTAL LOAD COMPUTATION ON GEOTECHNICAL TESTING JOURNAL 5



results using the standard analysis (Fig. 10). By using the
same approach as in the first example to estimate individual
non-linear stiffness functions for each gage level and applying
the incremental load-strain analysis method, a realistic load
distribution is computed without discarding any strain gage data
(Fig. 11).

Tensile Loading Case History

An analogous effect to strain gage data can be observed when the
applied load is tensile rather than compressive. In this case, the
axial pile stiffness will decrease from an initially high value to a
residual value approximately equal to the stiffness of the embed-
ded steel reinforcement, as the concrete is fractured due to applied
tensile stress. This effect can be observed directly in Fig. 12,
which plots data collected during a tension load test. Using the
known tensile applied load and data from a set of strain gages

embedded in the pile above ground level, the axial pile stiffness is
back-calculated by simply reversing Eq 8

AEn ¼ Pn=en (13)

The result is a decreasing value of axial pile stiffness up to an
applied tensile load of approximately 4.5 MN (corresponding to
an average strain of 230 microstrain measured by the above-
ground gages), after which the computed stiffness becomes nearly
constant, and closely matches the computed stiffness of the em-
bedded steel reinforcement. This calculation visibly follows the
tensile stiffness pathway proposed in Fig. 5 (note that the strain
increases from right to left in Fig. 12, corresponding with the sign
convention of Fig. 5).

The fact that the compression test results presented in the pre-
viously discussed case histories displayed very similar behavior,
but in reverse, was the impetus for assuming that certain piles
were initially fractured and in deriving the incremental load-strain
method presented herein.

FIG. 9—Revised strain gage analysis.

FIG. 10—Original strain gage analysis.
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Verification of Strain Gage Data

Often when presented with strain gage data which seems, at first
glance, to be too high, it is tempting to simply dismiss the data as
a product of a “malfunctioning” gage. However, the instrumenta-
tion setup for a typical O-cell test allows for an independent verifi-
cation of the gage data. Telltale rods in steel pipe casings are
monitored to measure the compression between the O-cell and
zero shear (top of concrete) level. This measured compression is
compared to a theoretical compression, derived from

d ¼ C
PL

AE
(14)

where PL/AE is the standard formula for elastic compression and
C is a reduction factor (0 < C < 1) which accounts for the shape of
the load distribution curve (for uniform load shedding, C 5 0.5).

Typically, the measured and computed compressions agree to

within 10%, indicating that the computed values of AE and C are

reasonable. However, in the examples previously presented, along

with other instances where the “fractured concrete” assumption

had to be made and the incremental load-strain approach applied,

the measured compression was significantly greater than the cal-

culated compression in every instance. A second way to compute

the compression is to numerically integrate the strain gage data. In

practice, this means multiplying the measured strains by the tribu-

tary length of the associated pile segment (length between mid-

points above and below each gage level).
The two methods are compared for a selection of seven differ-

ent pile tests with suspected concrete tensile cracking in Fig. 13.
Each of the two calculated compression values (elastic formula
from Eq 14 and the strain integration method) are plotted versus

FIG. 11—Revised strain gage analysis.

FIG. 12—Stiffness calculation from above-ground strain gages.
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the corresponding measured compression. The associated trend-
lines clearly show that the strain integration method yields results
which are quite similar to the measured data, while the elastic for-
mula significantly underpredicts the actual compression. It is thus
concluded that the measured strains are valid data which repre-
sents an actual physical phenomenon occurring within the pile
during the course of the test, even though the standard conversion
of the strain to load (via Eq 2) yields results which are not
credible.

Conclusion

The assumption of a simple linear-elastic stress-strain relationship
may not be appropriate for all pile load tests. Significantly, non-
linear axial pile stiffness may be caused by fractures in pile con-
crete, which can occur either due to soil restraint during curing or
as a result of applied tensile loads. When analyzing strain gage
data for a pile which has non-linear stiffness properties, an incre-
mental approach for computing the load presented herein can pro-
vide a more reasonable load distribution. For piles with suspected
fractured concrete, the engineer can deduce the approximate shape

of the stiffness as a function of strain by examining the incremen-
tal versus cumulative strain data. The incremental approach may
also be applied when the axial pile stiffness is non-linear for other
reasons besides fracturing (such as the tangent modulus analysis).
For a pile stiffness which is constant, the incremental approach
will produce the same results as the direct calculation of strain to
load. When possible, measured strains should be validated by
comparing the results to an independent measurement of pile com-
pression from instrumented telltales.
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