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ABSTRACT

Detailed analysis of a bored pile lateral load test is required to generate the family of non-

linear lateral load–displacement curves known as “p–y” curves. Current methods of

calculating these curves from test pile data may not make full use of all data (inclinometer,

strain gage, head deflection) available. The method outlined below incorporates all available

data in formulating a mathematical model of the pile behavior from which p–y curves may

be derived.
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Nomenclature

{a} ¼vector of pile behavior model polynomial constant factors
B ¼total number of measurement data points along Z at a given applied load
C ¼number of curvature data points along Z at a given applied load
D ¼number of displacement data points along Z at a given applied load
d ¼data point depth (units L)
EI ¼product of Young’s modulus E and second moment of area I (units FL2)
k ¼Winkler elastic foundation stiffness (units FL)
m ¼order of the polynomial of the pile behavior model function
M ¼moment along Z (units FL)
n ¼degree of derivative of pile behavior model function
N ¼number of load increments in a static load test
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Introduction

Non-linear foundation spring stiffness curves (“p–y” curves) at

various depths of a particular site allow the engineer to model

the lateral behavior of a pile under various loads. These curves

may be constructed based on published empirical methods or

derived from lateral pile load testing. When available, p–y

curves derived from an on-site load test should provide a better

predictor of foundation behavior for that particular site. Previ-

ous researchers have presented various methods for deriving

p–y curves from a single type of pile test data (typically, incli-

nometer data), usually using applied load and measured head

displacement as boundary conditions. The method presented

herein models the pile behavior from a mix of all typical test

data (displacements, inclinometers, strain gages, etc., in any

available combination), even including applied pile head loads

and/or moments, which themselves may be considered to be

measured data points.

Background

To determine the lateral capacity of the pile, p–y curves are

used to represent nonlinear springs attached at nodes along the

length of the pile in a numerical model of the soil–structure

interaction. McClelland and Focht (1958) developed the con-

cept of p–y curves, in which the lateral soil reaction per unit

length p is plotted versus the pile displacement y at discrete

depths. Other important work on theoretical solutions and

instrumentation was developed by Matlock et al. (1956),

Matlock and Ripperger (1958), and Matlock and Reese (1962).

The elementary analytical model used for the behavior of a

laterally-loaded pile is the semi-infinite beam on a Winkler

foundation. The model is defined on a coordinate system with

origin at the ground elevation. The depth variable z increases

downward along the Z-axis, which lateral displacement y is

measured along the Y-axis (see Fig. 1). The basic differential

relationship from beam theory is expressed as:

EI
d4y
dz4
þ ky ¼ 0(1)

where:

EI¼ the beam bending stiffness,

k¼ the elastic foundation spring stiffness, and

y ¼ f zð Þ¼ a continuous, differentiable function of depth.

Multiplying the second, third, and fourth derivative of this

displacement function, respectively, by EI yields functions for

the momentM, shear V, and line load p, respectively:

M ¼ EI
d2f zð Þ
dz2

(2)

V ¼ EI
d3f zð Þ
dz3

(3)

p ¼ EI
d4f zð Þ
dz4

(4)

If both EI and k are constants, closed-form solutions to Eq 1

have been derived for a number of boundary conditions, includ-

ing an applied point load and applied moment at the free end of

a semi-infinite beam, which are of greatest interest in modeling

a laterally-loaded pile (Hetényi 1946). For the case of an applied

pile head lateral load P0, y is computed as:

y ¼ e�kz 2kP0
k

cos kzð Þ(5)

where

k ¼
ffiffiffiffiffiffiffi
k
4EI

4

r
(6)

is a constant of units 1/L, known as the inverse of the character-

istic length of the beam. A closed-form solution has also been

put forward for the case of a foundation stiffness monotonically

increasing with depth k zð Þ ¼ k0z (Franklin and Scott 1979).

However, more complicated problems involving foundation

stiffness which is variable not only with depth, but also with

p ¼line load along Z (units F/L)
V ¼shear along Z (units F)

{q} ¼vector of measured data points
(displacement, rotation, etc.)

[R] ¼matrix of polynomial operators
k ¼inverse of pile characteristic length (units 1/L)
y ¼lateral displacement (units L), dependent

function of depth
Y ¼axis of lateral displacement

y0, y00, etc. ¼first, second, etc., derivative of y with respect
to z

z ¼depth, the independent variable of pile
behavior model

Z ¼axis of depth (positive downward)
a ¼rotation (units radians) measured by an

inclinometer gage
e ¼bending fiber strain measured by a strain gage
h ¼curvature (units 1/L) computed from paired

strain gage data
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displacement (non-linear stiffness curve), especially if combined

with a variable EI (due to changes in pile reinforcement and/or

diameter along the pile length, or because of tensile cracking

due to applied load), do not have closed-form solutions

available.

Accurate determination of p–y curves directly from a lateral

pile load test is desirable for input into numerical analysis and

design programs (for example the COM624P code or its

commercial derivative LPILE; see Wang and Reese (1993), or

FB-MultiPier), but not straightforward. Typically, instruments

are embedded in the test pile to ascertain behavior under load.

These instruments are located at relatively few discrete depths,

which may not correspond to the points of inflection, maximum

bending, etc., which would be of greatest interest in characteriz-

ing the pile response to load. Fitting of analytical curves to dis-

crete data points is a method to cope with these limitations.

Once an analytical function is curve-fit to the data, it may be

used to investigate pile behavior at any depth.

Many authors (for example McVay et al. (2009), Nip and

Ng (2005)) have implemented curve fitting to lateral load test

data, using the assumption that the function f(z) can be

approximated by a polynomial of sufficiently high order m:

y ¼ f zð Þ �
Xm
i¼0

aiz
i

(7)

This assumption has the advantage that a solution may be

obtained via the method of linear least-squares (LLS), which is

easily implemented. The LLS method is based on the construc-

tion of a set of polynomial equations:

R½ � af g ¼ qf g(8)

where the B� mþ 1ð Þ matrix R½ � consists of B number of rows

of polynomial operator vectors 1; z; z2; � � � zm
� �

on

the independent variable z, the vector af g ¼ a0 � � � amf gT

contains the constant factor for each corresponding operator,

and the vector qf g ¼ y1 � � � yBf gT contains the B number

of measured data points. To implement the LLS, the number of

data points must be greater than or equal to the order of the

polynomial plus one: B � mþ 1ð Þ. Equation 8 is reformulated

as:

R½ �T R½ � af g ¼ R½ �T qf g(9)

then solved for af g:

af g ¼ R½ �T R½ �
h i�1

R½ �T qf g
n o

(10)

One disadvantage is that subsequent derivatives of the polyno-

mial function geometrically compound any errors in the origi-

nal curve-fit. Taking the fourth derivative of Eq 7 can result in

nonsense when plugged back into Eq 1. To overcome this, one

theoretical solution is to increase the order of the polynomial.

The exponential and trigonometric components of Eq 5 may

both be expressed as Taylor series, and thus their product

should be amenable to accurate approximation by polynomials;

however, in order to match Eq 5 over a range of 0 � kz � p to

0.01 %, a 15th-order polynomial is required. This value may

easily exceed the number of available data points B (the prob-

lem becomes underdetermined, and thus is not suitable for a

LLS curve fit). Therefore, the method of a purely polynomial

approximation may be of limited use in extracting the p–y

curves from test data. As one possible alternative, Brown et al.

(1994) proposed refining assumed p–y curves by optimizing the

input parameters of a computer model until the model output

matches inclinometer data. This approach makes indirect use of

the inclinometer data but does not include other potential data

sources such as strain gages. Other proposed methods for back-

calculating p–y curves include the b-splines curve-fitting (de

Sousa Coutinho 2006) and residual numerical differentiation

method (Brandenberg et al. 2010).

Curve-Fit Method Formulation

The method of analysis proposed herein modifies the standard

polynomial function of Eq 7 by addition of an exponential

multiplier, similarly to Eq 5:

FIG. 1 Conceptual sketch of lateral pile forces and reactions.
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y ¼ e�kz
Xm
i¼0

aiz
i

(11)

which serves to dampen out the amplitude of f(z) and its deriva-

tives at greater depths, analogous to the structure of Eq 5.

In compact form, the nth derivative of this function with

respect to z can be written as:

dnf zð Þ
dzn

¼ e�kz
Xn
j¼0

n!

j! n� jð Þ!

� �
�kð Þ n�jð Þ

(

�
Xm
i¼j

i!
i� jð Þ!

� �
aiz

i�jð Þ

( ))
(12)

Note that if k is set equal to zero in Eq 12, the original simple

polynomial of Eq 7 (and its derivatives) is recovered. Next, Eq

12 is rearranged to group terms by the polynomial constants ai:

dnf zð Þ
dzn

¼
Xm
i¼0

aie
�kz

Xb¼min i;nð Þ

j¼0

� �kð Þ n�jð Þ n!

j! n� jð Þ!

� �
i!

i� jð Þ!

� �
z i�jð Þ

� �
(13)

Data collected during the course of a lateral load test is unusual

in that some of the measured data (lateral displacement) may

be modeled using the assumed mathematical function y, while

other measured data (rotation a, curvature h) may be modeled

using derivatives of the same function y:

ad ¼ dyd=dz ¼ y0d; hd ¼ d2yd=dz
2 ¼ y00d

The proposed curve-fit method incorporates all of these data

into a single LLS, which will find the best-fit function to match

displacements, while simultaneously matching rotation and cur-

vature data with derivatives of the same function.

In-place inclinometer (IPI) instruments are typically pre-

ferred for lateral load tests since they can be sampled nearly

instantaneously at multiple fixed depths, numerous times over

the course of a test. IPI data measures rotation ad at discrete

depths zd (in radians). This is used to calculate a lateral pile dis-

placement profile via numerical integration, by summing the

sine of each measured rotation multiplied by the spacing

between the IPI gages. Because the casing bends continuously,

but in-place inclinometers pivot at fixed points, the measure of

rotation a1 given by the gage is not valid at the gage pivot point

elevation z1, but rather at some lower elevation z2 (see Fig. 2)

which is not explicitly known. Therefore, data from IPIs should

be converted to calculated displacement yd rather than the

measured rotation ad , using simple trigonometry and the

assumption that the base pivot wheel of the IPI string (“IPI 0”)

does not translate laterally. Pile head lateral dial gages or dis-

placement transducer (DT) gages provide an independent mea-

surement of lateral head translation, which may also be used to

determine if the base pivot point of the inclinometer string is

fixed by comparing the measured DT and computed IPI dis-

placements at ground elevation. Thus, inclinometers and pile

head displacement transducers are both used to generate dis-

placement data points yd at depths zd .

An inclinometer which provides rotation data at the exact

depth of the instrument, such as a single instrument lowered

into the casing on a cable and sampled sequentially at different

depths, will generate rotation data points y0d at depths zd .

Strain gages (SGs) in opposing pairs, aligned vertically in

the pile in the plane of the direction of lateral loading at a radius

r from the centerline, provide curvature data:

hd ¼
ecompression � etension
	 


d

2r
(14)

FIG. 2 IPI point of rotation schematic.
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Note that Eq 14 assumes the pile is axi-symmetric, and the

bending stiffness EI remains constant (concrete has not frac-

tured on the tensile side and the neutral axis is at the center of

the pile). It may be possible to analyze paired strain gage data

beyond the tensile strain limit to compute h using an appropri-

ate model for a variable EI and changing neutral axis location.

For the sake of simplicity in illustrating the proposed curve-

fitting method, the assumption is made throughout this discus-

sion that the pile remains intact, and that the bending stiffness

EI is also constant.

To demonstrate the proposed method, assume that D num-

ber of inclinometer displacement data points z1; y1ð Þ to

zD; yDð Þ, plus C number of strain gage curvature points z1; y001
	 


to zC; y00C
	 


are available from a lateral load test. In order to

implement the least squares fit, Dþ Cð Þ must be greater than or

equal to m (the problem must be overdetermined).

First, the Dþ Cð Þ � mþ 1ð Þ matrix array R½ � is con-

structed of the model components for each data point:

R½ � ¼

g1;0 � � � g1;m
..
. . .

. ..
.

gD;0 � � � gD;m
h1;0 � � � h1;m

..

. . .
. ..

.

hC;0 � � � hC;m

2
666666664

3
777777775

(15)

with the elements:

i. gd;i ¼ e�kzd zdð Þi (from Eq 11)

ii: hd;i ¼ e�kzd
Xb¼min i;2ð Þ

j¼0
�kð Þ n�jð Þ n!

j! n� jð Þ!

� �
i!

i� jð Þ!

� �
z i�jð Þ

� �

(from Eq 13)
Next, a Dþ Cð Þ � 1 vector array of the observed data

points is constructed:

qf g ¼ y1 � � � yD j y001 � � � y00Cf gT(16)

The LLS is then solved using Eq 10. The resulting vector array

af g contains the mþ 1ð Þ polynomial constants that result in a

simultaneous best fit for the given D displacement and C curva-

ture data points, for a given inverse characteristic length k.

Because k is non-linear with respect to the variable z, it cannot

be determined directly via the LLS. A value may be picked by

the user which yields reasonable results (see discussion in Case

1 Validation, below), or it may be optimized either by use of a

non-linear Gauss–Newton solution in a program implementa-

tion (an iterative optimization), or by use of an optimization

package in a spreadsheet implementation, (i.e., Solver in Micro-

soft Excel).

Once all constant parameters af g; k have been determined,

Eqs 11 and 12 may be used to compute the curve-fit

displacement and its derivatives, and the moment, shear, and

line-load profiles are recovered using Eqs 2–4.

Additional sources of data besides IPIs and SGs may also

be considered. An inclinometer attached directly to the pile

head will provide a head rotation data point y00. The known

applied load P0, and moment M0 (applied directly or generated

implicitly if P0 is applied to a free-standing column some dis-

tance above the origin) may be used to generate two additional

data points y0000 ¼ P0=EI and y000 ¼ M0=EI, respectively. For

deeply-embedded piles, displacement, rotation, moment (curva-

ture), shear, and line load may all be assumed zero at the pile

tip. This data can also be directly incorporated into the curve

fit. Note that in other formulations (Nip and Ng 2005), inputs

such as head displacement, head rotation, applied moment, and

shear at the head and zero moment and shear at the tip are con-

sidered boundary conditions which must be satisfied exactly. In

the current proposed solution scheme, they are considered addi-

tional data points, which contribute to the solution but may not

be precisely matched by the curve-fit. Considering that most

such data points are themselves either assumptions or measure-

ments with their own associated uncertainties, it does not seem

unreasonable to give them roughly equal weight as inclinometer

and strain gage data points. Additionally, a further possible

refinement to the solution is the addition of a weighting matrix,

by which the user can assign different weights to different data

points (based on confidence of various data’s accuracy, for

instance):

af g ¼ R½ �T w½ � R½ �
h i�1

R½ �T w½ � qf g
n o

(17)

The default value for w½ � is the identity matrix I½ �, giving equal

weight to each data point. To construct a p–y curve at a given

depth, the solution outlined above is implemented for each of a

series of load test increments 1 to N, resulting in N sets of con-

stant vectors af g1 to af gN . Next, for each load increment, Eq 4

and Eq 11 are solved at the selected depth, and the results

tabulated.

As mentioned above in the discussion of strain gage data,

the bending stiffness EI is assumed constant in the derivation

presented above and the validation calculations in the next sec-

tion (justified by the fact that in the pile in Case 1, embedded

strain gage data yielded the same magnitude of bending strain

on the compressive and tensile sides, and in Case 2 is a simple

virtual model). In a typical reinforced concrete pile, lateral load-

ing will result in tension cracks developing, leading to an EI that

is a non-linear function of strain. This function may be approxi-

mated by application of the relevant beam theory and does not

preclude the use of this method to calculate M, V, or p using

Eqs 2–4, simply by replacing EI with EI(e). However, it should

be noted that the additional assumptions associated with mod-

eling EI as a function of strain will introduce more uncertainty

into the analysis.
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Validation

CASE 1

The first data set used for validation of the method outlined

above is one of the very few known to the author to include

direct measurement of lateral pressures in a full-scale lateral pile

test. Figure 3 illustrates the lateral instrumentation schematic for

a pile load test conducted in Friedetal, Germany (Loadtest

2006). The test was conducted as part of the construction of a

viaduct on the Göttingen-to-Halle autobahn A38 highway. This

viaduct, which crosses the Peace Valley (the “Friedetal”) near

Sollstedt in the state of Thüringen, has a total span of 485m

formed in six sections with the largest spanning 130m. The

ground conditions at the site were quite challenging, with gyp-

sum layers susceptible to washout plus the potential of subsist-

ence due to a history of mining in the region.

The 1180-mm diameter test pile was excavated dry to a

depth of �47.81meters by oscillating a sectional temporary

casing downward and removing the soil with a crane operated

grab. After reaching tip elevation, the rebar cage (eight 25-mm

epoxy-coated steel vertical rebars with 10-mm epoxy-coated

steel hoops at 250mm spacing) with attached instrumentation

was inserted simultaneously with a permanent 26-m long, 1016-

mm O.D., 16-mm thick steel casing coated on the outside with

bitumen. The permanent casing was installed to isolate the

upper pile section from down-drag due to anticipated soil settle-

ment. Concrete was delivered by pump through a nominal 150-

mm pump line inserted to the base of the pile. As the concrete

head rose above the base of the permanent casing, grout was

pumped into the annulus between the permanent and tempo-

rary casings through a nominal 13-mm pipe. Sections of tempo-

rary casing and pump line were removed as the concreting

progressed until reaching the concrete cutoff elevation at the

ground surface.

Six specially-made piezometer lateral earth pressure cells

(PCs) with dimensions 150mm wide by 200mm tall were

FIG. 3

Friedetal test pile schematic.
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installed in the wall of the permanent casing during construc-

tion, in line with the direction of applied lateral load. A string of

IPIs (not illustrated) was inserted into a cast-in-place casing

prior to start of the test, with an inclinometer at each lateral

pressure cell elevation. Five levels of paired sister-bar SGs in

line with the lateral load were attached to the reinforcing cage.

All embedded instruments used in the test were vibrating-wire

type gages, with individual calibrations performed prior to in-

stallation in the pile. The test pile was laterally loaded in five

nominally equal steps (designated “1L-1” to “1L-5”) to a maxi-

mum load of 600 kN. Because the test pile had been used previ-

ously as an axial test pile, with two levels of embedded

Osterberg cells (Osterberg 1989), the lateral analysis is only car-

ried out down to the upper Osterberg cell (O-cell) elevation.

The previously-expanded upper O-cell (which was not pressur-

ized during the lateral test) acted as a pivot which would not

transmit moment, and only partially transmit shear. The test

section of the pile is therefore approximately 26ms deep,

although the entire pile was approximately 48ms deep. The lat-

eral load was applied in tension via a 50-mm steel bar cored

through the pile approximately 0.2meters above ground eleva-

tion and connected to a reaction pile. Data collected during the

course of the load test and used in the calculations below is

summarized in Table 1.

The 0.15-m wide pressure cells were located in-line with

the direction of load application, and measured pressure in kPa

TABLE 1 Friedetal lateral test data summary.

Inclinometers (degrees)

Load Increment Load (kN) 1 2 3 4 5 6 7

1L-1 120 �0.005 �0.003 �0.012 �0.002 �0.005 0.007 0.032

1L-2 240 �0.006 �0.004 �0.020 �0.013 �0.010 0.021 0.056

1L-3 360 �0.007 �0.004 �0.025 �0.006 �0.007 0.033 0.087

1L-4 480 �0.007 �0.004 �0.029 �0.007 �0.004 0.045 0.123

1L-5 600 �0.008 �0.005 �0.033 �0.009 �0.002 0.063 0.165

Pressure Cells (kPa)

Load Increment Load (kN) Head Display (mm) 1 2 3 4 5 6

1L-1 120 1.56 �5.7 0.0 1.3 �15.6 �11.0 60.1

1L-2 240 4.20 �4.6 �0.8 �0.1 �32.5 �7.2 91.7

1L-3 360 7.43 �11.2 �2.1 �6.1 �53.9 6.9 119.8

1L-4 480 11.01 – �4.1 �15.8 �76.7 24.8 154.4

1L-5 600 15.42 – �3.9 �15.9 �78.1 24.7 152.4

Strain Gages (microstrain, C¼ compression, T¼ tension)

Load Increment Load (kN) 1C 1T 2C 2T 3C 3T 4C 4T 5C 5T

1L-1 120 �0.8 �0.5 �0.5 �0.2 0.1 0.1 �0.2 0.4 6.8 �5.7
1L-2 240 �1.6 �1.0 �0.4 �0.4 0.5 0.2 �0.9 1.4 21.9 �19.5
1L-3 360 �2.2 �1.5 �0.6 �0.6 0.1 0.1 �2.5 1.9 41.3 �38.1
1L-4 480 �3.2 �1.9 �0.8 �0.8 �0.2 �0.3 �4.3 2.6 63.2 �59.2
1L-5 600 �3.5 �2.4 �1.0 �0.9 �0.4 �0.6 �6.9 3.3 89.2 �83.3

FIG. 4 Friedetal lateral test displacement data and curve-fit.
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FIG. 5 Friedetal lateral test line load data and curve-fit.

FIG. 6 Friedetal lateral test strain gage curvature and computed moments.

FIG. 7 Friedetal lateral test computed shears.

FIG. 8 Friedetal lateral test measured and computed p–y curves.
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on the central 15 % of the 1.016-m wide pile cross-section only.

In order to convert the measured pressure into a line load on

the whole pile face, in units of kN/m, the results were multiplied

by the pile diameter, then scaled by two-thirds, based on the

assumption of a parabolic pressure distribution on the cross-

section of pile diameter (see Prasad and Chari 1999). For this

data set, it was possible to estimate k¼ 0.255 based on the slope

of the measured p–y curve at Pressure Cell 6 (PC 6) and the

computed pile EI of 2307 MN-m2, using Eq 6. Use of a constant

EI for this analysis is justified by the observation that the tensile

and compressive strains recorded up to maximum applied load

are of equal magnitude (Table 1), indicating uniform curvature

in the pile and the absence of tensile cracks, at least up to the

elevation of the top-most level of strain gages. The polynomial

order m was selected to be 6 in order to minimize fitting errors.

Data used in the curve-fit included IPI 0 to 7, SG 3 to 5 (the lev-

els above the upper O-cell), the Pile Head DT, and the shear

(applied load divided by EI) and moment (zero) at the pile

head, for a total of 14 data points. Note that all gage positions

are numbered sequentially from deepest embedment to shallow-

est, following the convention of bi-directional axial (O-cell)

load test instrumentation schematics. Based on the load test

data, the curve-fit function parameters discussed above and the

analysis technique described in the previous section, the follow-

ing results were obtained:

Figure 4 plots the computed lateral deflections, based on IPI

and Pile Head Displacement Transducer (DT) data, for each

load increment 1L-1 to 1L-5. The measured data points are con-

nected by dashed lines to indicate assumed displacement curves.

The grey line is the curve-fit displacement result for 1L-5

FIG. 9

Split-lateral test program schematic.
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(results were computed for each load increment, but omitted in

Figs. 4 and 5 for clarity).

Figure 5 plots the computed line load from PCs, and the

curve-fit result for 1L-5. Note that PC 1 gave unusually high

results, then stopped functioning altogether, and is not included

in the plot or any data analysis. For comparison purposes, the

thick grey dashed line is the result of an identical analysis but

with k¼ 0 (simple polynomial). A simple visual inspection of

this result clearly indicates that it is a very poor fit to the meas-

ured PC data, most likely due to the accumulated errors of dif-

ferentiating a simple polynomial fit four times.

Figure 6 plots the measured curvature from Strain Gage lev-

els 3, 4, and 5 (data points) and the computed bending moment

(curves). Figure 7 plots the computed shear profiles. Finally, the

measured (dashed line) and computed (solid line) p–y curves at

PC levels 4 and 6 (the only two levels where significant displace-

ment occurred) are compared in Fig. 8.

Note that there is not perfect correlation between all meas-

ured data points and curve-fit results. In particular, the cure-fit

curvature at SG 5 elevation is approximately 75 % greater than

what was derived from the strain gages. These discrepancies

may be due to limitations of the method, the assumption of a

constant EI and/or the assumptions made in converting sister-

bar axial strain data into a curvature value (Eq 14). Also note

that the displacement axis in Fig. 9 has been offset by 1.25mm

to account for initial displacement due to previous testing. The

apparent lateral displacement at the tip of the upper pile section

(Fig. 4), computed by offsetting the IPI results to match pile

head DT data, may indicate a shear load transfer through the

upper O-cell, although there is no way to confirm or quantify

this with the available instrumentation. O-cell hydraulic seals

have a certain amount of play to allow an O-cell to maintain

pressure without binding up if differential opening due to non-

symmetric reaction occurs during a bi-directional test. The neg-

ative line load for PC 4 is due to the displacement reversal, and

may not be an adequate match partly because the pressure cell

was on located on the “wrong” (i.e., tensile) side of the pile due

to the reversal. Nevertheless, the curve-fitting method is able to

recover, to a reasonable degree, the magnitude of both line load

and displacement (the “p” and the “y,” respectively, of the meas-

ured p–y curves). Note that the actual PC data was not included

in the curve-fitting, since it was being used as the validator of

the method in this case, although it could have been included by

using the appropriate application of Eq 13.

CASE 2

The second data set used for validation of the method outlined

above comes from a series of three split-lateral tests conducted

on a site in Canada (Loadtest 2010). The split-lateral test is a

specialized full-scale test designed to measure lateral soil resist-

ance at a specific depth (Brown and Camp 2002). For this pro-

ject, the engineer needed to isolate the lateral load carrying

capacities of a deeper soil formation for design purposes

because the overburden layers would be cut as a part of the con-

struction project and would not contribute to pile capacity.

The three tests were conducted in adjacent excavations, at

depths of 10, 16, and 23ms (designated as Zones 3, 2, and 1 in

the test results), respectively. Figure 9 illustrates a composite

schematic showing the relative positions of each assembly in a

single vertical axis for clarity, relative to the soil profile. The

data were used as input to solve for eight load steps in a

TABLE 2 Split-lateral test data summary.

Zone 3 Zone 2 Zone 1

Y (m) P (kN/m) Y (m) P (kN/m) Y (m) P (kN/m)

0.000 0 0.000 0 0.000 0

0.001 284 0.001 432 0.001 820

0.002 546 0.002 826 0.002 1408

0.003 790 0.003 1187 0.003 1851

0.004 1017 0.004 1519 0.004 2195

0.005 1228 0.005 1825 0.005 2472

0.006 1426 0.006 2108 0.006 2698

0.007 1611 0.007 2371 0.007 2887

0.008 1785 0.008 2616 0.008 3047

0.009 1948 0.009 2844 0.009 3184

0.010 2102 0.010 3058 0.010 3303

0.011 2248 0.011 3258 0.011 3407

0.012 2385 0.012 3446 0.012 3499

0.013 2515 0.013 3622 0.013 3581

0.014 2639 0.014 3789 0.014 3654

0.015 2756 0.015 3946 0.015 3720

0.016 2868 0.016 4095 0.016 3780

0.017 2974 0.017 4236 0.017 3834

0.018 3075 0.018 4369 0.018 3884

0.019 3171 0.019 4496 0.019 3929

0.020 3264 0.020 4617 0.020 3971

FIG. 10 Split-lateral test computed lateral deflection.
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Microsoft Excel implementation of the COM624P lateral pile

analysis program (Jenkins 2010), using a pile EI of 16000 MN-

m2 derived from an assumed 1.525-m diameter pile design (no

actual pile was constructed during the testing phase, only three

separate split-lateral assemblies).

Table 2 lists the three p–y curves derived from the split-

lateral tests (curves are smoothed for analysis purposes):

A typical load–displacement response is plotted in Fig. 10.

The resultant eight load–displacement profiles were then used

as input into the curve-fit algorithm, the results of which were

reconstructed into p–y curves as described above. For this anal-

ysis, k was estimated to be equal to 0.3 using Eq 6 and based on

the pile EI and average modulus k derived from the split-lateral

results. The polynomial order m was selected to be 7 in order to

minimize fitting errors. Zone 1 (the deepest, at 23ms) did not

experience any significant movement in the COM624P model,

but Zones 2 and 3 did, with excellent matching between the

input and output p–y curves, as plotted in Fig. 11.

Conclusion

A new method of curve-fitting data analysis for a lateral load

pile test is proposed that includes the calculation of p–y curves

from all available instrument data typically gathered during

such a test. Validation against real pile test results yields good

comparisons. In Validation Case 1, while the p–y results are not

an exact match, they do provide values which may be consid-

ered adequate given the necessary assumptions made in the

analysis and amount of uncertainty in measured data. The

results plotted in Figs. 5 and 7 also conform to the expectation

that moment should be zero at the pile head, and then increase

with depth until soil reaction dampens it out, while the shear

curves generally match the magnitudes of loads applied at the

pile head. In Validation Case 2, the output p–y curves match

the input p–y curves closely.

The method outlined in this paper is not fully automatic,

and requires the user to employ some engineering judgment in

selecting the input parameters k and m, such that the results

conform to the general expectations of pile behavior. However,

the solution is direct, not iterative, and can be implemented in a

spreadsheet format relatively easily, which allows for straight-

forward analysis of test results for input into design methods.

The addition of a variable flexural stiffness EI (due to flex-

ural cracking of pile concrete, typically) introduces an addi-

tional complication in the analysis which is not addressed in

this paper. It is hoped that further research, by the authors or

others, will extend the method to piles with variable flexural

stiffness.
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